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Motivated by the recently developed �T. Plackowski et al., Rev. Sci. Instrum. 73, 2755 �2002�� technique for
measuring isothermal magnetocaloric coefficient �MT�, we revisit the thermodynamic properties of coupled
spin chains in a field. The coupled Ising antiferromagnetic chains in two and three dimensions, quantum XY
chain in a transverse field, and Heisenberg chain are considered. For the Ising model the shift of the critical
temperature under magnetic field and dependence of MT on interchain coupling are found. The field depen-
dence of MT for several models is presented. It is demonstrated that in the disordered phase in the presence of
antiferromagnetic fluctuations, MT changes sign at some value of the magnetic field. Generally, MT is negative
if magnetic field competes with a short-range order, and consequently it can be an indicator of the change in
the short-range correlation.
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I. INTRODUCTION

As recently shown, the isothermal magnetocaloric effect
can be a useful tool for studying vortex melting or reversible
processes in superconductors1,2 and lines of phase transitions
in magnets.3 The technique for measuring the isothermal
magnetocaloric coefficient via precise measurements of the
heat flux between the sample and its surrounding was pre-
sented in Ref. 1.

Isothermal magnetocaloric coefficient can be defined as

MT = − T� �S

�H
�

T

= − T� �M

�T
�

H

, �1�

where S and M denote the entropy and magnetization along
an applied external magnetic field H, respectively. With such
a definition, positive MT means that the entropy decreases
with increasing field. Plackowski et al.3 studied the magne-
tocaloric effect in UNi0.5Sb2 in the vicinity of the Néel tem-
perature �TN� with the magnetic field applied along the easy
axis and found that MT is negative for all values of tempera-
ture and applied field. Thus, in this case, the magnetic field
results in an increase in the entropy in the system. They have
also noted that in the high-temperature phase the magneto-
caloric coefficient is small and weakly dependent on both the
field and temperature, whereas close but below the transition
temperature MT shows significant field and temperature de-
pendencies. For temperatures T�TN at some values of the
field, the magnetocaloric coefficient exhibits a maximum in-
terpreted as a phase-transition point. This maximum is
shifted toward higher fields with increasing temperature,
which has allowed the authors to find the critical line �phase
diagram� in the plane �external field and temperature�. How-
ever, MT can be also used as an indicator of a short-range
order change in a high-temperature �disordered� phase or in
materials which do not undergo any finite temperature phase
transitions as, for example, one-dimensional �1D� spin sys-
tems.

As seen in Fig. 1 MT of the exactly solvable one-
dimensional Ising antiferromagnet for sufficiently low tem-
peratures changes sign at some value of the field. At very
low temperature �t=T /J=0.2 in Fig. 1� both MT and two-

nearest-neighbor-spin correlation function G change sign
close to the critical value of the field H /J=2. For higher
temperature the point at which the magnetocaloric coefficient
changes sign is shifted toward lower field values, whereas
such a point for G is shifted to higher fields. For t�2, MT is
positive for all values of the field. It means that for the 1D
Ising model with the antiferromagnetic interactions for t
�2, the entropy first increases with increasing field and then
decreases, starting with some characteristic value of the field.
Of course in the case of the ferromagnetic interaction MT is
always positive �Fig. 1, right bottom plot�.

In this paper the magnetocaloric coefficient is studied by
using the linear perturbation renormalization-group �LPRG�
transformation4 for three spin models: �i� Ising weakly
coupled antiferromagnetic chains in two and three dimen-
sions at the presence of an external magnetic field, �ii� XY
chain in a transverse field, and �iii� Heisenberg chain in a
field. Generally, these models are described by the following
Hamiltonian:
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FIG. 1. Correlation function G �dashed line�, magnetocaloric
coefficient Mt �solid�, and magnetization m �thin� as functions of
field for several values of reduced temperature for 1D antiferromag-
netic Ising model. The bottom right figure compares the 1D Ising
model with ferromagnetic �dashed line� and antiferromagnetic
�solid� interactions.
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H = H0 + HI, �2�

where H0 describes spin chains with intrachain interaction
J�=−K�T in an external magnetic field H=hT,

H0 = �
�=x,y,z

K��
k=1

L

�
j=1

M

�
i=1

N

Si,j,k
� Si+1,j,k

� + h �
i=1

NML

Si,j,k
z , �3�

coupled by weaker interchain interactions �J1
�=−K1

�T and
J2

�=−K2
�T�,

HI = �
�=x,y,z

K1
���

i,j
Si,j,k

� Si,j+1,k
� + �

i,k
Si,j,k

� Si,j,k+1
� �

+ �
�=x,y,z

K2
���

i,j
Si,j,k

� Si+1,j+1,k
� + �

i,k
Si,j,k

� Si+1,j,k+1
� � ,

�4�

where Si
� represents a spin 1/2 and the factor −1 /T has al-

ready been absorbed in the Hamiltonian.
The LPRG approach starts with the exact decimation for

one-dimensional Ising or approximate decimation for one-
dimensional quantum spin systems.5 Then, on the basis of it,
the interchain interaction is renormalized in a perturbative
way. The renormalization-group �RG� transformation for the
Hamiltonian H is defined as usual by

exp�H���� �� = TrS� P�S� ,�� �exp�H�S��� . �5�

The weight operator P�S� ,�� � which couples the original �S��
and effective ��� � spins is chosen in a linear form. It means
that the projector of the system is defined as a product of the
individual spin projectors,

P�S� ,�� � = �
i=0

N

p�S� ,�� �, pi =
1

2�1 + 4 �
�=x,y,z

Smi
� �i

�� . �6�

In this paper, the chain is divided into �m+1�-spin blocks and
in each renormalization step, every �m+1� spin survives.
Transformation �5� can be written in the form

H���� � = H0� + ln	eHI�S
��
 , �7�

with standard cumulant expansion6 for 	eHI�S
��
 and

	A
 �
TrS AP�S,��eH0�S�

TrS P�S,��eH0�S� . �8�

The rest of the paper is organized as follows. In Sec. II
transformation �5� is used to find the critical temperature and
magnetocaloric coefficients as functions of interchain inter-
actions and external magnetic field of the systems made of
the weakly interacting Ising spin chains in two dimensions
and three dimensions. In Sec. III the LPRG is applied to
study MT and two-point correlation function G= 	Si

zSi+1
z 
 of

the XY chain in the transverse field, and in Sec. IV the
Heisenberg antiferromagnet chains in a field are considered.
Concluding remarks are made in Sec. V.

II. WEAKLY INTERACTING ISING CHAINS

The 1D Ising model is described by Hamiltonian �3� with
Kx=0, Ky =0, and Kz=k, where k=Jz /T= t−1 denotes the re-

duced inverse temperature �in numerical calculation we will
always assume J=max�J�=1�. The effective Hamiltonian of
such a chain H0� and all averages necessary to evaluate cu-
mulants can be, of course, found exactly for an arbitrary size
of the spin block. However, in order to consider the Ising
chains in higher dimensions we have to confine ourselves to
some reasonable size of the spin cluster and in consequence
rather small block. In our previous paper7 we used the four-
spin block which is the smallest nontrivial block appropriate
to analyze an antiferromagnetic chain. The idea of the LPRG
in two dimensions is presented in Fig. 2. The open circles
represent the spins which survive in the decimation proce-
dure. In each step of the renormalization-group transforma-
tion every other row �“even” row� is removed, and from
“odd” rows every third spin survives. As usual, we are look-
ing for the renormalized interactions

h��i,j, k��1,1�2,1, k1��1,1�1,3, k2��1,1�2,3. �9�

It is easy to find that

	S3i,j
 �
TrS S3i,jP�S,��eH0�S�

TrS P�S,��eH0�S� = �i,j , �10�

and

	S3i+1,j
 = w0 + w1�i,j + w2�i+1,j + w12�i,j�i+1,j ,

	S3i+2,j
 = w0 + w2�i,j + w1�i+1,j + w12�i,j�i+1,j , �11�

where i is the number of the spins in the chain, j is the
number of rows, and wi are exactly known functions of the
intrachain interaction k and external field h �see the Appen-
dix�. In the lowest nontrivial order of the cumulant expan-
sion which in our case is the second order, one should con-
sider the contributions to the effective Hamiltonian from

	HI�S�
 +
1

2
�	�HI�S��2
 − 	HI�S�
2 , �12�

where

�HI�S��2 = �
i

��Vj,j+1�2 + 2Vj,j+1Vj+1,j+2� , �13�

and Vj,j+1 describes the interaction between j and j+1 rows.
The first term in Eq. �13� contributes, of course, only to the
intrachain interaction h��i,j and k��i,j�i+1,j, and second to the
interchain interaction k1��i,j�i,j+2 and k1��i,j�i+1,j+2. As seen
from Eq. �10� contributions to interaction �9� come only
from the original spins S1,j , . . .S8,j. The other spins from odd
rows, for example, S0,1 and S9,1 in Fig. 2, do not contribute to
interaction �9� because they involve other effective spins,

FIG. 2. The cluster used to get renormalized Hamiltonian of the
coupled Ising chains in two dimensions. Open circles denote effec-
tive spins.
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�0,1 and �3,1, respectively. So, similarly as in Ref. 6 in order
to consider the interchain interactions we can use the cluster
�8-10-8�. However, the contributions to the effective intrac-
hain interactions in row j �h��i,j and k��i,j�i+1,j� come not
only from the coupling Vj,j+1 but also from Vj−1,j, which we
have not considered in our previous paper. Taking into ac-
count these additional contributions slightly improves the re-
sults. For example, for the standard Ising model on the
square lattice �k1=k and k2=0�, we have found here the criti-
cal inverse temperature kc=0.45 and previously4 kc=0.41
which should be compared with the exact result kc=0.4407.
Figure 3 shows the cluster used to consider the system of the
coupled chains in three dimensions. Also, in this case we
take into considerations the contributions to the intrachain
interactions from all nearest-neighbor rows of a given row.

To evaluate transformation �7� in both cases �two-
dimensional �2D� and three-dimensional �3D�� one has to
know the averages of several spins and spin products from
decimated—odd and removed—even rows. The latter ones
are of course numbers. For the Ising model all of these av-
erages are known exactly, and for the spins from removed
even rows �see, for example, Ref. 8�,

	si
z
 =

sinh h
�cosh2 h + e−4k − 1

, 	si
zsi+n

z 
 = Gz
n, �14�

where

Gz =
1

A2�4�B − A�
B + A

e2h + e4k�e2h − 1�2� �15�

and

A = �4e2h + e4k + e4�h+k� − 2e2h+4k, B = e2k + e2�h+k�,

�16�

whereas for decimated odd rows with four-spin block the
averages of several spins have been presented above �Eqs.
�10� and �11�� and for the two spin products they are given
by

	S3i,jS3i+1,j
 = w1 + w0�i,j + w12�i+1,j + w2�i,j�i+1,j ,

	S3i,jS3i+2,j
 = w2 + w0�i,j + w12�i+1,j + w1�i,j�i+1,j ,

	S3i+1,jS3i+3,j
 = w2 + w12�i,j + w0�i+1,j + w1�i,j�i+1,j ,

	S3i+2,jS3i+3,j
 = w1 + w12�i,j + w0�i+1,j + w2�i,j�i+1,j ,

	S3i+1,jS3i+2,j
 = q0 + q1��1 + �2� + q12�1�2,

	S3i,jS3i+3,j
 = �i,j�i+1,j , �17�

where wi and qi are presented in the Appendix.
Now we are able to evaluate numerically the renormaliza-

tion transformation �7�. In the second order in the cumulant
expansion with clusters presented in Figs. 2 and 3 for 2D and
3D systems, respectively, the RG transformation has a form
of the four recursion relations for four parameters, intrachain
interaction k=Kz, interchain interactions �transverse k1
=K1

z /Kz and diagonal k2=K2
z /Kz�, and magnetic field h. As

usual, in order to determine the critical temperature one has
to find a critical surface which separates in the parameter
space the regions of attraction of the two stable fixed points,
zero temperature k�=� and infinite temperature k�=0. Fig-
ure 4 shows the critical inverse temperature as a function of
the interchain interaction k1 for k2=0 in the absence of ap-
plied field. In 2D case as mentioned in our previous paper4

the LPRG in the lowest nontrivial approximation gives, even
for k1=k �standard Ising model�, quite reasonable agreement
with the exact result. The values of the inverse critical tem-
perature found by using LPRG with cluster �8-10-8� for sev-
eral values of the interchain interactions are listed in Table I.
As seen for the interchain interaction 0.5�k1�0.15 the de-
viation from the exact values is less than 1% and for 1�k1
�0.15 it is less than 2%. For smaller values of k1 the error
becomes larger because then the phase transition is shifted to
the very low temperature where the LPRG fails. For the sys-
tem of the Ising chains in three dimensions in the lowest
approximation, the LPRG leads to the critical inverse tem-
perature kc=0.299 for the standard Ising model with k1=k
and k2=0 which is rather far from the best estimation kc

FIG. 3. The cluster used to renormalize coupled Ising chains in
three dimensions. Open circles denote effective spins. 0.2 0.4 0.6 0.8 1
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2
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FIG. 4. Critical inverse temperature �kc� of the Ising model as a
function of interchain interaction �k1�; 2D �dots—LPRG; thin
line—exact result� and 3D �dashed line—LPRG�.

TABLE I. Critical inverse temperature of the Ising chains
coupled by interchain interaction k1 in two dimensions.

k1 kc �LPRG� kc �exact�
Error
�%�

1 0.45 0.4407 2.1

0.5 0.604 0.609 0.8

0.2 0.876 0.876 0.0

0.15 0.983 0.968 0.8

0.1 1.159 1.104 5.0

0.05 1.549 1.349 14.8
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=0.21. Of course one expects that for the weaker interchain
interaction the method should work better; unfortunately we
have not found any results to be compared. The approxima-
tion can be improved by taking into account the higher or-
ders in the cumulant expansion and by increasing the used
cluster.

In zero magnetic field the critical temperature of the anti-
ferromagnetic transition �k�0� is identical to that of a fer-
romagnet �k�0�. Hereafter, in this section we will focus our
attention on the Ising antiferromagnetic chains with the
original intrachain interaction k�0 coupled by ferromag-
netic interchain interaction k1=−�k with �=1 and 0.2 �k2
=0� in the longitudinal field. In the presence of the longitu-
dinal external field the antiferromagnetic phase transition of
the Ising model in opposition to the ferromagnetic one sur-
vives, and the critical temperature is shifted to the lower
temperature with increasing field. This shift is presented in
Fig. 5 for �=1 in two dimensions and �=0.2 in two dimen-
sions and three dimensions. For the chains coupled by the
weak interchain interaction �=0.2 in both cases, 2D and 3D,
the critical temperature is shifted according to the power law

tc − tc�h� � h	, �18�

with 	 close to 2 �2 for 3D system and 2.2 for 2D one�. For
the field small enough the similar behavior is observed also
for the model with �=1 in two dimensions. In the latter case
for higher fields the results can be satisfactorily fitted to the
power law with 	 close to 4.

As usual except for the effective spin-dependent terms,
the renormalized Hamiltonian H���� contains also a constant
term F�ki ,h� which can be used to calculate numerically the
free energy per spin according to the formula

f = �
n=1

�
F�ki

�n�,h�n��
3n . �19�

Using the recursion relations for the parameters ki and h and
formula �19� one can find the thermodynamic quantities of
the model under consideration. Figure 6 shows the field de-
pendence of the magnetocaloric coefficient of the antiferro-
magnetic Ising chains coupled by weak interchain interaction

�=0.2 for several values of inverse temperature k. For the
highest temperature k=0.4 �t=2.5� the magnetocaloric coef-
ficient is positive for all values of field. For k�0.4 there is a
range of the field for which MT is negative, and the point of
the sign changing is shifted toward the smaller fields for
decreasing temperature. The dashed line denotes the curve
for the temperature t=1 /0.9, lower than zero-field critical
temperature of the system tc=1 /kc=1 /0.876 �Table I�. In this
case �k=0.9� MT diverges at hc=0.443. So, similarly as in
one-dimensional case if only the temperature and field are
small enough MT is negative in the higher-temperature �dis-
ordered� phase of the Ising antiferromagnet.

III. XY CHAIN IN TRANSVERSE FIELD

Below in this section, we consider a one-dimensional
quantum spin XY model with Kx=Ky, where Kz=0 in a trans-
verse field. For a quantum system, because of the noncum-
mutavity of several terms of Hamiltonian �2� the decimation
transformation cannot be carried out exactly and we apply
the approximate decimation proposed by Suzuki and
Takano.5 The Suzuki-Takano procedure takes quantum effect
into account within a single block and neglects the effect of
noncommutativity of several blocks. Thus, in opposition to
the Ising case the results depend on the division of the chain
into blocks, i.e., on the size of the block. In our previous
paper7 we used the smallest nontrivial for the antiferromag-
netic chain block size m=3 �four spin in a block�. In the
present paper we extend our study to larger blocks, six and
eight spins. In Fig. 7 and Table II the results of the linear
renormalization group �LRG� for the zero-field XY chain free
energy obtained by using four-, six-, and eight-spin blocks
are compared with the exact results found by Katsura.9 As
one expects for high temperatures all three approximations
are in quite good agreement with the exact result. For low
temperatures there is a considerable deviation from the exact
result especially for the smallest block. However, even for
rather low reduced temperature t=0.08 the deviation of the
free energy from the exact values for the eight-spin block is
about 6%, and for t=1 it is about 1%. So, for sufficiently
high-temperature LRG should lead to reasonable results also
for the quantum models.

Applying transformation �7� to Hamiltonian �3� with Kx

=Ky =K�0, Kz=0, one obtains the transformed Hamiltonian
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FIG. 5. Critical temperature as a function of field; top dots k1

=k for 2D Ising antiferromagnet �dashed lines denote Tc=2.2
−0.18h2.1 and Tc=2.0−0.06h4�; bold lines k1=0.2k �bottom for 2D
Tc=1.1−0.17h2.2 and upper for 3D Tc=1.5−0.22h2 Ising
antiferromagnets�.
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FIG. 6. Field dependence of the 2D Ising coupled chains mag-
netocaloric coefficient with k1 /k=0.2 for k=0.9 �dashed line�, 0.8,
0.7, 0.6, 0.5 �thin lines, from bottom to the top�, and 0.4 �solid line�.
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for the effective spin operators �� with effective parameters
K� and h�, and as usually generated by the transformation
interaction parameter �Kz��. Using the recursion relations for
these three parameters obtained with eight-spin block, and
the formula for free energy �19�, we find the field and tem-
perature dependences of the magnetocaloric coefficient �MT�
and two-point longitudinal correlation function �G�,

G = 	Si
zSi+1

z 
 . �20�

Figure 8 shows the field dependence of MT for several values
of the inverse critical temperature K=1 / t. For temperatures
small enough 1 / t=1.25 and 0.8 there is a region of the field
where MT is negative which points to the existence of out-
of-plane antiferromagnetic correlations. Of course for the XY
model the existence of such correlations does not depend on
the sign of the in-plane interaction �K�. In Figs. 9 and 10 the
temperature dependences of the correlation function G and
MT for several values of the field are presented. For h�2
correlation function is negative for the sufficiently low tem-
perature, whereas for h�2 it tends to the saturation value
G=1. This behavior is a symptom of the zero-temperature
phase transition between the critical state and the state with
the spins directed along the field, perpendicularly to the
plane XY. The same behavior can be observed for MT which
can be easily measured by using the method mentioned
above. As seen in Fig. 10 for h�2, MT changes sign at some

value of temperature, whereas for h�2, MT is positive for all
values of temperature.

IV. HEISENBERG ANTIFERROMAGNETIC CHAIN IN
FIELD

In this section we shall apply linear RG transformation �7�
with weight operator �6� and m=7 �eight-spin cluster� to
study Heisenberg chain �3� �Kx=Ky =Kz=K� in the magnetic
field. Figure 11 shows the field dependence of MT for ferro-
magnetic �K�0� and antiferromagnetic �K�0� interactions
at several temperatures t=K−1. In the ferromagnetic case MT
has a maximum at some characteristic value of the field hmax
and linearly tends to zero as h→0. For increasing tempera-
ture from t=1 to t=3.3 the height of this maximum is almost
constant but the location is shifted toward higher field values
according to the power law hmax� t3/2 �Fig. 12�. In the anti-
ferromagnetic case for sufficiently low temperature there is a
field value at which MT changes sign and then shows a maxi-
mum. Similarly as for the ferromagnet this maximum is
shifted toward higher fields with increasing temperature.
However, in this case the maximum height grows with tem-
perature and the shift can be fitted to the law hmax−h0� t5/4

�Fig. 12�.
The magnetocaloric coefficient MT is measured at con-

stant temperature but its temperature dependence at constant
field can yield some hint about the short-range order and
zero-temperature phase transition in systems without finite
temperature long-range order. In Fig. 13 the results for MT

TABLE II. Free energy of the quantum XY model for several
values of temperature found by using four-, six-, and eight-spin
clusters and exact result.

t f4-site f6-site f8-site fexact �Ref. 9�

0.08 18.4 17.33 16.9 15.93

0.278 5.14 4.908 4.818 4.62

1.05 1.394 1.381 1.375 1.36

1.333 1.166 1.158 1.155 1.148

2.5 0.844 0.843 0.843 0.842

4.0 0.754 0.754 0.754 0.754

1 2 3 4 5
h

-0.05

0.05

0.1

0.15

0.2

0.25

Mt

FIG. 8. Field dependence of the magnetocaloric coefficient of
the 1D XY model in a transverse field for inverse temperature 1 / t
=0.5, 0.6, 0.8, and 1.25 from top to the bottom.
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FIG. 9. XY model. Temperature dependence of G for several
values of the field h=1.0, 1.5, 1.9, 2.0, and 2.1 from bottom to the
top.
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f

FIG. 7. Temperature dependence of the one-dimensional XY
model free energy found by using the four-spin �thin line�, six-spin
�dotted line�, and eight-spin �dashed line� blocks. The solid line
denotes the exact result found by Katsura �Ref. 9�.
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are shown for various magnetic fields below as well as above
the saturation field hc=4. For low fields �0.5 and 1 in Fig. 13�
MT is negative and then for sufficiently high temperature it is
positive, which means that magnetization first increases with
increasing temperature and then decreases. For the field
strong enough above the saturation field h�hc �4 and 5 in
Fig. 13� the magnetization decreases with increasing tem-
perature. For intermediate values of the field MT changes
sign twice. Because the method used in this paper is the
high-temperature approximation we were not able to find
accurately the range of the field. The origin of this behavior
is the competition between the applied magnetic field and
antiferromagnetic interactions and can be explained in the
same way as a two-peak structure of the specific heat ob-
served for the system under consideration.10

V. CONCLUSION

The linear real-space renormalization-group transforma-
tion has been used to calculate the isothermal magnetocaloric
coefficient for three spin systems. We start with the weakly
coupled Ising chains in two and three dimensions. In this
paper the LPRG method4 has been improved by taking into
account all contributions from the nearest-neighbor rows to
the nearest and next-nearest effective interchain interactions,
whereas in our previous papers we confined ourselves to the
smallest nontrivial cluster. The LPRG transformation is ob-
tained by two approximations: �i� the abbreviation of the
cumulant expansion which is reasonable if the intrachain in-
teraction is weaker than interchain one �k1�k� and �ii� the
truncation of the interchain interaction generated by transfor-
mation �7�. Usually, in the higher-order calculation the RG
transformation generates different interactions. In our case

the number of these different interactions already in the
second-order cumulant expansion is infinite for an infinite
system. Thus, in order to carry out the LPRG transformation
we have to confine ourselves to a finite cluster which is jus-
tified if only the temperature is not too low. So, the LPRG
method can be used for a weak interchain interaction but not
too weak because in the latter case the critical temperature is
shifted to very low temperatures. In the range of the approxi-
mation validity �0.5k�k1�0.15k in Table I� the results for
Tc differs by less than 1% from the exact value. However,
even in the case of the standard Ising model where the inter-
chain interaction is equal to the intrachain one, we have
found the value for the inverse critical temperature kc
�0.45 which differs by 2% from the exact one; in the pre-
vious paper this difference was about 7%. The LPRG method
has been also used to study the critical temperature of the
weakly interacting Ising chains system in three dimensions.
In this case the value of the inverse critical temperature kc
�0.299 found for the standard Ising model �k1=k� is not
satisfactory in comparison with the best estimate kc�0.21.
Of course, one expects that the result should be better for the
weakly interacting chains where the present approximation is
valid, but it also seems that for the system in three dimen-
sions one should consider a bigger cluster and the higher
cumulant expansion.
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FIG. 10. XY model. Temperature dependence of Mt for several
values of the field h=1.0, 1.5, 1.9, 2.0, and 2.1 at t=1 from bottom
to the top.

FIG. 11. Field dependence of the magnetocaloric coefficient for
one-dimensional Heisenberg ferromagnet for inverse temperature
1 / t=0.3, 0.5, 0.8, and 1.0 from right to the left, and antiferromagnet
for 1 / t=0.3, 0.4, 0.5, and 0.8 from top to the bottom, respectively.
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FIG. 12. The characteristic field of the magnetocaloric coeffi-
cient maximum as a function of temperature for Heisenberg
ferromagnet—the bottom solid curve denotes hmax=0.26t3/2—and
antiferromagnet—the upper solid curve denotes hmax=4.15
+0.36t5/4.

FIG. 13. Heisenberg model. Temperature dependence of Mt for
several values of field h=0.5–5.0.
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For a quantum system, because of the noncommutativity
of several terms of Hamiltonian �3�, the renormalization
transformation cannot be carried out exactly even for a 1D
lattice and in zero magnetic field. Thus, in opposition to the
classical Ising model even in one dimension, one has to
make some approximation to obtain the explicit form of the
RG transformation. The simplest approximation is based on
the Suzuki-Takano idea5 of finding the chain averages con-
sidering only a few spin blocks. It means that the results of
the decimation depend on the one-dimensional block size.
We have compared the temperature dependence of the quan-
tum XY model free energy found by using four-, six-, and
eight-spin blocks with that obtained rigorously by Katsura.9

As one expects for sufficiently high temperatures t�2.5
�Table II� independent of the block size, the LRG leads to the
correct values of the free energy. However, for lower tem-
perature the results depend on the block size and, for ex-
ample, for t=4 /3 the free-energy value found with eight-spin
block differs from the exact value by 0.6%, whereas that
found with four-spin block differs by 1.6%. The deviation is
of course much larger for low temperatures, and the free
energy at t=0.278 differs from the exact value by 4% and
11% for eight- and four-spin blocks, respectively. So, it
should be noted here that the used approximation is high-
temperature approximation especially in the case of the
quantum spin models.

Finally, we have calculated the isothermal magnetocaloric
coefficient MT for several spin models in disordered
phases—paramagnetic phase of the coupled Ising chains in
two dimensions and three dimensions, and s=1 /2 quantum
spin chains. For the system with ferromagnetic coupling in a
longitudinal field, MT is always positive because the field
supports the ferromagnetic interaction. It means that such a
system under the field becomes more ordered and conse-
quently the entropy decreases with increasing field. For the
system with antiferromagnetic coupling in the longitudinal
field, there is a region of field values for which MT is nega-
tive and the entropy increases with increasing field. In the
latter case there is a competition between the antiferromag-
netic coupling and applied field, and as a result of this the
system becomes less ordered. Of course for the field strong
enough MT changes sign and the entropy decreases with in-
creasing field. The similar behavior is observed for the XY
model in a transverse field. In this case the field plays again
out-of-plane antiferromagnetic correlations existing in such a
system.

It was shown2,3 that MT is a very useful tool, complemen-
tary to the specific heat CH, for studying thermodynamic
properties of superconductors and magnets mainly in the or-
dered phase. The authors have paid attention to significant
advantage of MT over CH, the absence of phonon contribu-
tion, which usually dominates specific heat close to critical
temperature. Thus, one can conclude that, in some cases, in
order to find a phase diagram, it is better to resort to the
measurements of magnetocaloric effect than specific heat.
The calculations of MT for the simple spin systems presented
in this paper have shown that precise measurements of the
magnetocaloric effect in a disordered phase can give some
additional insight into properties of the system. First, by us-
ing the measurements of MT as a function of magnetic field,

one can detect a change in the short-range correlation char-
acter, which is pronounced in the changing of sign of MT, for
example, as shown above the existence of the antiferromag-
netic correlations. Generally, MT is negative if there is a
competition between an external field and exchange interac-
tions. Second, from MT�T� curves taken for several values of
the field the existence of a zero-temperature phase transition
can be deduced. As shown in Figs. 10 and 13 it is easy to see
the changes in the shape of these curves at the critical values
of the field: for the XY model in transverse field at hc=2 and
for Heisenberg antiferromagnet at hc=4.
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APPENDIX

In this appendix we present coefficients wi and qi �Eqs.
�11� and �15�� as functions of intrachain interaction k and
magnetic field h,

w0 =
1

2R
�e4h − 1��e4h + 2e8h + 7e4�h+k� + 2e8�h+k� + e4�h+3k�

+ 4e2h+4k + 4e6h+4k + 4e2h+8k + 3e4h+8k + 4e6h+8k� ,

w1 =
1

2R
e2h�1 + e2h�2�e4k − 1��3e2h + 2e4k + 2e4�h+k� + e2h+8k� ,

w2 =
1

2R
e4h�e4k − 1�2�1 + 4e2h + e4h + e4k + e4�h+k�� ,

w12 =
1

2R
e4h�e4k − 1��e4k − 1�3, �A1�

and

q0 =
1

R
�e4�h+3k� + e2h+4k − 2e6h+4k − e8h+4k − e4h − 4e6h − e8h

− e4�h+k� + e10h+4k + e2h+8k + e6h+8k + e10h+8k + e12h+8k

+ e8h+12k� ,

q1 =
e2h�e4h − 1��e4k − 1�

�2e2h + e4h + e4k��1 + 2e2h + e4�h+k��
,

q12 =
1

R
e4h�e4k − 1�2�1 + e2h + e4h + e2h+4k� , �A2�

where

R = �2e2h + e4h + e4k��1 + 2e2h + e4�h+k���e2h + e4k + e4�h+k�

+ e2h+4k� . �A3�
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